Senin, 24 November 2014

PENGERTIAN HARDISK


Pengertian Hardisk


Pengertian Hardisk banyak memiliki macam arti. Seperti dalam dunia teknologi, hardisk adalah komponen pelengkap komputer yang dapat dilihat secara kasat mata, dan contoh hardisk tersebut adalah seperti DVD Room, Prosessor, LCD, Keyboard,  dan soundcard. Keempat contoh ini adalah hardisk menurut dunia teknologi. Namun menurut dunia PC, hardisk diartikan sebagai media penyimpanan dimana data disimpan pada piringan metal yang bisa berputar. Data disimpan dalam lingkaran konsentris yang disbut juga dengan track. Tiap- tiap track dibagi menjadi beberapa sector yang nantinya akan digunakan untuk pembagi pada hardisk. Hardisk merupakan media penyimpanan yang mempunyai kapasitas besar. Ukuran minimal dari sebuah hardisk adalah 1GB yang dikembangkan oleh IBM pada zaman dulu. Kini, besar penyimpanan pada hardisk rata-rata mempunyai ukuran sebesar 256 GB.

Pengertian Hardisk

Pengertian Hardisk
Keberadaan PC memang tidak bisa dilewatkan tanpa adanya hardisk. Hardisk merupakan komponen penting untuk menyimpan data maupun untuk menjalankan sebuah task yang memiliki kecepatan tergantung dari besarnya sebuah hardisk. Pengertian hardisk semacam ini dinakan sebagai media penyimpanan internal dalam sebuah PC. Memang, laptop tanpa adanya hardisk masih bisa berjalan atau beroperasi, namun jika tidak ada media penyimpanan seperti hardisk, data yang disimpan nanti tidak akan bisa disimpan karena media penyimpanan masih kosong. Nah, disini hardisk juga berfungsi sebagai perangkat untuk membantu kinerja PC, namun jika hardisk terlalu banyak data maka kinerja dari PC akan menjadi lamban, dan akhirnya hardisk akan bekerja extra keras.
Pengertian hardisk dalam dunia komunikasi diartikan sebagai perangkat keras yang memiliki wujud dan bentuk dan secara kasat mata bisa dilihat. Contoh hardisk dalam dunia komunikasi adalah, pager, fax, ponsel, dan telepon rumah. Nah disini ponsel yang sudah semakin modern sudah bisa memulia menggunakan hardisk sebagai media penyimpanan data. Biasanya, ukuran hardisk pada ponsel berkisar antara 128 MB hingga 2GB. Hardisk pada ponsel disini juga mempunyai fungsi sebagai pembantu kinerja dari suatu ponsel. Semakin besar hardisk yang dimiliki oleh ponsel, maka kinerja yang dihasilkan akan semakin cepat.
Demikian penjelasan singkat mengenai pengertian hardisk, semoga dapat berguna dan bermanfaat bagi anda semua .

pengertian transformator



Pengertian Transformator adalah sebuah alat yang mentransfer energi antara 2 sirkuit yang melalui induksi elektromagnetik. Transformer di mungkinkan untuk di gunakan sebagai perubahan tegangan dengan mengubah tegangan sebuah arus bolak balik dari satu tingkat tegangan ke tingkat tegangan lainnya dari input ke input alat tertentu, untuk menyediakan kebutuhan yang berbeda dari sebuah tingkatan arus sebagai sumber arus cadangan, atau bisa juga di gunakan untuk mencocokkan impedansi antara sirkuit elektrik yang tidak sinkron untuk memaksimalkan pertukaran antara 2 sirkuit. Hal ini memungkinkan terjadinya pertambahan daya arus listrik yang terjadi dari sebuah benda yang memiliki arus tegangan listrik yang tidak stabil.

Berikut ini Contoh Gambar dari Pengertian Transformator

Pengertian Transformator
Pada pengertian transformator ini, biasanya alat ini terdiri dari 2 kabel yang melilit di sekeliling inti yang sama untuk menciptakan efek arus listrik yang sangat kuat dari ke 2 kabel tersebut. Inti tersebut biasanya di lapisi dengan besi. Gulungan yang menerima aliran arus listrik merujuk pada untaian primer, sedangkan gulungan hasil disebut dengan untaian kedua. Sebuah arus listrik di salurkan melalui untaian primer transformer yang menghasilkan medan elektromagnetik di sekelilingnya dan bemacam perubahan magnetik pada inti dari transformer tersebut. Dengan induksi elektromagnetik, perubahan magnetik tersebut menghasilkan bermacam daya elektromotif pada untaian kedua, menghasilkan arus listrik sepanjang sambungan hasil. Jika ada banyak impedansi yang tersambung sepanjang untaian kedua, aliran yang melewati untaian tersebut menyerap tenaga dari untaian primer dan sumber tenaganya.
Sedikit penjelasan tentang cara pengaplikasiannya pada pengertian transformator kali ini, fungsi transformer berdasarkan 2 prinsip hukum induksi elektromagnetik, yaitu sebuah arus elektrik yang melewati konduktor, seperti kabel, dapat menghasilkan sebuah medan elektrik yang mengelilingi kabel tersebut, dan sebuah perubahan medan magnetik di sekitar kabel dapat memberikan tegangan sepanjang ujung dari kabel tersebut. Demikian sedikit informasi tentang dasar-dasar pengertian dari sebuah transformator, semoga dapat bermanfaat bagi anda yang telah membacanya. Jika anda tertarik lebih untuk belajar tentang transformator, anda dapat melakukan penelitian dengan melakukan aktifitas browsing melalui internet dan google.

Pengertian sensor

PENGERTIAN SENSOR


Pengertian Sensor adalah transduser yang berfungsi untuk mengolah variasi gerak, panas, cahaya atau sinar, magnetis, dan kimia menjadi tegangan serta arus listrik. Sensor sendiri adalah komponen penting pada berbagai peralatan. Sensor juga berfungsi sebagai alat untuk mendeteksi dan juga untuk mengetahui magnitude. Transduser sendiri memiliki arti mengubah, resapan dari bahasa latin traducere Bentuk perubahan yang dimaksud adalah kemampuan merubah suatu energi kedalam bentuk energi lain. Energi yang diolah bertujuan untuk menunjang daripada kinerja piranti yang menggunakan sensor itu sendiri. Sensor sendiri sering digunakan dalam proses pendeteksi untuk proses pengukuran. Sensor yang sering menjadi digunakan dalam berbagai rangkaian elektronik antara lain sensor cahaya atau sinar, sensor suhu, serta sensor tekanan.

Contoh Gambar Pengertian Sensor

Pengertian Sensor
Dari pengertian sensor yang telah kami jabarkan diatas wajar jika alat tersebut menjadi alat yang banyak diminati oleh berbagai pabrikan elektronik. Salah satu pabrikan yang tengah gencar menggunakan sensor pada produk mereka adalah pabrikan handphone dengan model touch screen. Sensor tekanan pada berbagai handphone sekarang ini membutuhkan adanya dukungan dari sensor tekanan. Selain pada gadget dengan teknologi canggih tersebut, sensor tekanan juga biasa diaplikasikan kepada berbagai alat elektronik lain seperti kalkulator serta remot. Adanya tekanan pada tombol-tombol pada kalkulator ataupun remot bekerja dengan mengubah daya tekan tersebut menjadi daya atau sinyal listrik.
Dengan pengertian sensor beserta kinerja dari sensor tekanan diatas dapat diambil kesimpulan bahwa sensor memiliki banyak andil pada berbagai teknologi. Pada sensor suhu sendiri terdapat empat jenis sensor yang sering dipakai yaitu thermocouple, resistance temperature detectore, IC sensor dan termistor. Pada komponen thermocouple terdapat dua komponen transduser panas dan juga dingin. Kedua transedur tersebut berfungsi untuk membandingkan objek serta untuk mendapatkan hasil akan suhu dari objek. Platina menjadi pilihan utama pada komponen resistence temperature detectore karena memiliki tahanan suhu, stabilitas, kelinearan, reproduktifitas, serta stabilitas. Termistor merupakan resistor yang tahan terhadap panas, serta IC sensor sensor suhu dengan rangkaian yang menggunakan chipsilikon guna mendeteksi tingkat suhu yang terdapat pada objek.
Demikian penjelasan singkat tentang pengertian sensor, semoga artikel kali ini dapat berguna dan bermanfaat bagi anda semua.

Jenis-Jenis Sensor


Jenis-Jenis Sensor

Jenis-Jenis Sensor pada dasarnya terbagi menjadi 8 macam. Akan tetapi sebelum kita menilik lebih lanjut kita perlu mengetahui apakah sensor itu. Sensor merupakan alat yang berfungsi untuk mengubah suatu daya menjadi daya lain. Sensor sendiri merupakan turunan dari transedur yang memiliki fungsi sama dengan sensor. Sensor sendiri terbagi kedalam beberapa jenis, seperti yang sudah dijelaskan di awal jenis sensor terbagi menjadi 8 macam. Yang pertama adalah sensor suhu. Sensor suhu sendiri memiliki empat jenis yang sering digunakan dibandingkan dengan jenis lainnya. Keempat jenis tersebut adalah Termistor, IC sensor, Thermocouple, serta Resistance Temperature Detector. Sensor suhu biasa dipakai pada termometer. Selain itu terdapat sensor kecepatan dan tekanan. Sensor tekanan memanfaatkan kinerja kawat. Ketika kawat mengalami tekanan maka akan diubah menjadi sinyal listrik. Sensor tekanan biasa dipakai pada remot atau kalkulator. Sedang untuk sensor kecepatan yang biasa diaplikasikan kepada kendaraan bermotor. Sensor kecepatan biasa memanfaatkan perputaran roda pada kendaraan bermotor.
Jenis-jenis sensor lain adalah sensor ultrasonik. Sensor jenis ini memanfaatkan pantulan gelombang suara. Dengan memancarkan gelombang serta menangkap kembali pantulan gelombang suara tersebut. Sensor ultrasonik sering digunakan oleh kapal laut untuk menentukan kedalaman laut yang mereka lewati. Selajutnya adalah sensor sinar atau cahaya. Sensor cahaya memiliki tiga kategori; Fotovoltaic (sel solar), Fotokonduktif, dan Fotolistrik. Sensor cahaya biasa digunakan pada alat detektor harga pada berbagai supermarket ataupun infrared pada handphone. Berikutnya adalah sensor magnet. Seperti namanya, sensor jenis ini memanfaatkan medan magnet pada objek yang menyebabkan perubahan pada indikator. Sensor model ini harus terbebas dari debu, pasir, asap, dan juga uap. Sensor ini banyak diaplikasikan pada detektor logam yang biasa dipakai oleh satpam guna mendeteksi barang-barang berbahaya.

Jenis-Jenis Sensor

Jenis-Jenis Sensor
Jenis-jenis sensor berikutnya adalah sensor penyandi. Sensor jenis ini memanfaatkan gerakan berputar menjadi sinyal digital. Sensor jenis ini memiliki dua lapisan; penyandi rotasi tambahan dan penyandi absolut. Penyandi rotasi berfugsi untuk mengkalkulasi rotasi untuk setiap putarannya. Sedangkan penyandi absolut melengkapi kinerja penyandi rotasi serta memberi kode binary pada masing-masing sudut. Sensor jenis ini banyak dipakai pada brangkas-brangkas penyimpanan pada bank. Yang terakhir adalah sensor proximity. Sensor ini mendeteksi adanya target logam tanpa bersentuhan. Sensor jenis ini banyak diaplikasikan pada berbagai saklar mikro dan terkemas dari getaran, cairan, serta cairan kimia.
Dari jenis-jenis sensor tersebut terdapat berbagai keuntungan yang bisa kita ambil untuk diaplikasikan kedalam berbagai peralatan yang kita miliki. Selain itu, dengan mengetahui seluk beluk beberapa sensor yang ada diatas kita dapat memilih jenis sensor yang tepat untuk kegiatan kita. Kerusakan pada sensor pun dapat kita tanggulangi dan juga diantisipasi mengingat kita mengetahui beberapa hal yang harus dihindari ketika menggunakan sensor-sensor terbut. Pengaplikasian yang tepat guna juga bermanfaat untuk mengantisipasi berbagai kriminal yang semakin hari semakin banyak.
Demikian penjelasan singkat mengenai jenis-jenis sensor, semoga artikel kali ini dapat membantu dan bermanfaat bagi para pembaca.

JENIS-JENIS KAPASITOR

JENIS-JENIS KAPASITOR


Jenis-Jenis Kapasitor dalam rangkaian elektronika terbagi menjadi 2 macam, yaitu kapasitor polar dan kapasitor non polar. Yang di maksud kapasitor polar adalah jenis kapasitor yang memiliki dua kutub dan mempunyai polaritas positif/negatif. Kapasitor ini terbuat dari bahan elektrolit yang mempunyai nilai kapasitansi yang besar di bandingkan dengan kapasitor yang menggunakan bahan dielektrik.
Sedangkan yang di maksud kapasitor non polar adalah jenis kapasitor tidak memiliki polaritas postif dan negatif pada kedua kutubnya. Kapasitor ini juga dapat kita gunakan secara berbalik. Kapasitor ini biasanya memiliki nilai kapasitansi yang kecil karena terbuat dari bahan keramik dan mika. Meskipun kedua jenis kapasitor ini banyak digunakan untuk menyimpan muatan listrik, tapi masih banyak perbedaan dari kedua jenis tersebut, di antaranya adalah bahan yang digunakan dan juga fungsi kegunaannya dalam sehari-hari.

Gambar Jenis-Jenis Kapasitor

Jenis-Jenis Kapasitor
Jenis kapasitor juga dapat kita bedakan menjadi beberapa bagian, yaitu jenis kapasitor keramik, kapasitor elektrolit (elco), kapasitor tantalum, kapasitor multilayer, kapasitor polyester film, elekctric double, super kapasitor, trimer dan kapasitor tuning.
Sifat dasar kapasitor adalah menyimpan muatan listrik dan tidak dapat dilalui arus DC (Direct Current) tetapi dapat dilalui arus AC (Alternating Current) dan juga dapat berfungsi sebagai impedansi (Resistansi yang nilainya tergantung dari frekuensi). Berdasarkan nilai kapasitansinya, kapasitor di bagi menjadi 2 bagian, yaitu kapasitor tetap dan kapasitor variable.
Untuk jenis-jenis kapasitor multilayer adalah kapasitor yang terbuat dari bahan material. Kapasitor ini hampir sama dengan kapasitor keramik, perbedaannya hanya terdapat pada jumlah lapisan yang menyusun dielektriknya. Bahan dielektrik disusun dengan banyak lapisan dengan ketebalan 10 sampai 20 μm dan pelat elektrodanya dibuat dari logam yang murni. Selain itu, bentuk dari jenis kapasitor ini juga kecil dan memiliki karakteristik suhu yang bagus di bandingkan dengan kapasitor lainnya.
Fungsi Kapasitor dalam rangkaian elektronika adalah sebagai penghubung pada masing-masing bagian dalam rangkaian, memisahkan arus bolak-balik dari arus searah, sebagai filter pada rangkaian catu daya, sebagai pembangkit frekuensi pada rangkaian elektronik pemancar dan juga menghemat daya listrik pada rangkaian lampu TL.
Demikian penjelasan singkat mengenai Jenis-Jenis Kapasitor, semoga rangkaian di atas nantinya dapat berguna dan bermanfaat bagi anda semua .

Dioda Zener


Dioda Zener

Dioda Zener merupakan salah satu jenis dari dioda. Bagi anda yang memang memiliki basic atau dasar ilmu fisika terutama masalah elektronik pasti sudah mengerti apa itu dioda. Masalah dioda sebenarnya merupakan pembahasan awal atau salah satu materi dasar dari fisika. Namun bagi orang yang baru belajar ataupun bahkan tidak mengenal dasar ilmu fisika sama sekali tentu kata dioda merupakan kata yang sangat asing didengar. Secara singkat dioda sendiri dapat diartikan sebagai salah satu komponen elektronika semi konduktor yang berfungsi untuk menahan arus listrik dan juga dapat mengarahkan arus listrik. Pada dioda sendiri memiliki dua elektroda, yang pertama adalah anoda dan yang kedua adalah anoda.

Gambar Dioda Zener

Dioda Zener
Tapi sebelum masuk ke pembahasan dioda zener ada baiknya mengetahui terlebih dahulu apa itu dioda. Pembahasan diatas merupakan pengertian singkat dari dioda, dan sekarang mari kita membahas sedikit mengenai bagaimana cara mengarahkan arus listrik dengan menggunakan dioda. Dalam mengarahkan arus listrik pada suatu komponek elektronik dioda dapat digunakan sebagai jembatan. Apabila anda mempergunakan satu buah dioda maka sebagian dari arus tersebut akan terarahkan. Namun apabila anda ingin mengarahkan semua arus maka ada beberapa dioda yang harus digunakan dan tidak cukup satu dioda saja, bisa tiga bisa empat, tergantung besarnya arus yang ingin diarahkan. Untuk dioda zener sendiri fungsinya sedikit berbeda dari dioda biasa yang sudah dibahas.
Untuk dioda biasa dan dioda zener sebenarnya memiliki fungsi yang sama, yaitu sebagai penyearah arus listrik. Namun perbedaannya adalah pada arah yang disearahkannya, apabila pada dioada biasa arus yang disearahkan itu selalu ke satu arah saja, namun pada dioda jenis zener arus yang disearahkan akan selalu kembali, atau akan disearahkan pada arah yang berlawanan dari arus. Pada sirkuit atau komponen elektronik biasanya zener difungsikan untuk menstabilkan suatu arus atau tegangan. Apabila zener dipasang dengan cara catu balik, maka setiap tegangan yang tidak memenuhi kapasitas sudah tentu akan menyebabkan hubungan pendek arus atau dikenal juga dengan istilah konslet. Maka dari itu tegangan akan terus stabil karena adanya dioda zener.
Demikian penjelasan singkat tentang dioda zener, semoga artikel yang kami sampaikan dapat berguna dan bermanfaat bagi anda semua.

Transistor


Pengertian Transistor

Pengertian Transistor adalah komponen elektronika semikonduktor yang memiliki 3 kaki elektroda, yaitu Basis (Dasar), Kolektor (Pengumpul) dan Emitor (Pemancar). Komponen ini berfungsi sebagai penguat, pemutus dan penyambung (switching), stabilitasi tegangan, modulasi sinyal dan masih banyak lagi fungsi lainnya. Selain itu, transistor juga dapat digunakan sebagai kran listrik sehingga dapat mengalirkan listrik dengan sangat akurat dan sumber listriknya.
Transistor sebenarnya berasal dari kata “transfer” yang berarti pemindahan dan “resistor” yang berarti penghambat. Dari kedua kata tersebut dapat kita simpulkan.

 pengertian transistor adalah pemindahan atau peralihan bahan setengah penghantar menjadi suhu tertentu. Transistor pertama kali ditemukan pada tahun 1948 oleh William Shockley, John Barden dan W.H, Brattain. Tetapi, komponen ini mulai digunakan pada tahun 1958. Jenis Transistor terbagi menjadi 2, yaitu transistor tipe P-N-P dan transistor N-P-N.

Gambar Tentang Pengertian Transistor

Pengertian Transistor
Cara Kerja Transistor hampir sama dengan resistor yang mempunyai tipe dasar modern. Tipe dasar modern terbagi menjadi 2, yaitu Bipolar Junction Transistor atau biasa di singkat BJT dan Field Effect Transistor atau FET. BJT dapat bekerja bedasarkan arus inputnya, sedangkan FET bekerja berdasarkan tegangan inputnya.
Dalam dunia elektronika modern, transistor merupakan komponen yang sangat penting terutama dalam rangkaian analog karena fungsinya sebagai penguat. Rangkaian analog terdiri dari pengeras suara, sumber listrik stabil dan penguat sinyal radio. Tidak hanya rangkaian analog, di dalam rangkaian digital juga terdapat transistor yang digunakan sebagai saklar dengan kecepatan tinggi. Beberapa transistor juga dapat di rangkai sehingga berfungsi sebagai logic gate.

Jenis-Jenis Transistor juga berbeda-beda, berdasarkan kategorinya dibedakan seperti materi semikonduktor, kemasan fisik, tipe, polaritas, maximum kapasitas daya, maximum frekuensi kerja, aplikasi dan masih banyak lagi jenis yang lainnya.
Demikian penjelasan singkat mengenai pengertian transistor, semoga artikel di atas dapat berguna dan bermanfaat bagi anda semua.

FUNGSI DIODA


Fungsi Dioda

Fungsi Dioda sangat berpengaruh penting didalam rangkaian elektronika. Karena dioda adalah komponen semikonduktor yang terdiri dari penyambung P-N. Dioda merupakan gabungan dari dua kata elektroda, yaitu anoda dan katoda. Sifat lain dari dioda adalah menghantarkan arus pada tegangan maju dan menghambat arus pada aliran tegangan balik. Selain itu, masih banyak lagi fungsi dioda lainnya, sebagai berikut :
  • Sebagai penyearah untuk komponen dioda bridge.
  • Sebagai penstabil tegangan pada komponen dioda zener.
  • Sebagai pengaman atau sekering.
  • Sebagai pemangkas atau pembuang level sinyal yang ada di atas atau bawah tegangan tertentu pada rangkaian clipper.
  • Sebagai penambah komponen DC didalam sinyal AC pada rangkaian clamper.
  • Sebagai pengganda tegangan.
  • Sebagai indikator untuk rangkaian LED (Light Emiting Diode).
  • Dapat digunakan sebagai sensor panas pada aplikasi rangkaian power amplifier.
  • Sebagai sensor cahaya pada komponen dioda photo.
  • Sebagai rangkaian VCO (Voltage Controlled Oscilator) pada komponen dioda varactor.
Secara keseluruhan dioda dapat kita contohkan sebagai katup, dimana katup tersebut akan terbuka pada saat air mengalir dari belakang menuju ke depan. Sedangkan katup akan menutup apabila ada dorongan aliran air dari depan katub. Simbol dioda digambarkan dengan anak panah yang diujungnya terdapat garis yang melintang. Cara kerja dioda dapat kita lihat dari simbolnya. Karena pada pangkal anak panah disebut sebagai anoda (P) dan pada ujung anak panah dapat disebut sebagai katoda (N).

Gambar Tentang Fungsi Dioda

Fungsi Dioda
Pada umumnya, dioda terbuat dari bahan silikon yang sudah dibekali tegangan pemicu. Tegangan pemicu ini sangat diperlukan agar elektron bisa langsung mengisi hole melalui area depletin layer. Didalam komponen dioda tidak akan terjadi pemindahan elekrton hole dari P ke N maupun sebaliknya. Itu di sebabkan hole dan elektron akan tertarik ke arah kutub yang berlawanan. Bahkan lapisan depletion layer semakin besar dan menghalangi terjadinya arus.
Demikian penjelasan singkat mengenai fungsi dioda, semoga artikel kali ini dapat berguna dan bermanfaat bagi anda semua.

cara pembuatan kabel LAN

Cara Pembuatan Kabel LAN


Kabel UTP atau Unshielded Twisted Pair atau Ethernet Cable atau kita biasa menyebutnya dengan kabel LAN adalah kabel yang digunakan untuk menghubungkan antar peralatan yang berhubungan dengan computer network (komputer, hub, switch, router). Kabel ini bentuknya seperti kabel telefon, hanya lebih besar. Yang dimaksud dengan kabel UTP adalah hanya kabelnya, sedangkan kepala kabelnya adalah 8 position modular connectors (8P8C) yang biasa disebut RJ-45 (RJ=register jack).


warna-warna
warna kabel2 didalam kabel UTP adalah:
- biru
- putih-biru
- hijau
- putih-hijau
- oranye
- putih-oranye
- coklat
- putih-coklat

jenis kabel
berdasarkan kapasitas
10BASE-T : 10 Mbps (mega bit per second)
Cat 5 (Category 5) / 100BASE-TX : 100 Mbps
Cat 6 (Category 6) / 1000BASE-T : 1000 Mbps (1 Gbps)

berdasarkan urutan kabel
ada dua macam susunan kabel:
> TIA/EIA-568-A (T568A)
putihhijau-hijau-putihoranye-biru-putihbiru-oranye-putihcoklat-coklat



> TIA/EIA-568-B (T568B)putihoranye-oranye-putihhijau-biru-putihbiru-hijau-
putihcoklat-coklat





Untuk perangkaian kabel straight dan cross sbb:
Straight (Straight-through): T568A vs T568A atau T568B vs T568B (lebih sering dipakai)
kedua ujung susunannya: putihhijau-hijau-putihoranye-biru-putihbiru-oranye-putihcoklat-coklat
atau
kedua ujung susunannya: putihoranye-oranye-putihhijau-biru-putihbiru-hijau-putihcoklat-coklat

Cross (Crossover): T568A vs T568B
satu ujung susunannya: putihoranye-oranye-putihhijau-biru-putihbiru-hijau-putihcoklat-coklat
dan
ujung lainnya susunannya: putihhijau-hijau-putihoranye-biru-putihbiru-oranye-putihcoklat-coklat



penggunaan jenis kabel
>Kabel Cat 5 biasa digunakan untuk menghubungkan antara hub/router/switch ke PC karena koneksi ini tidak memakai traffic data yang besar sehingga 10 MBps sudah cukup.
Sedangkan Cat 6 digunakan untuk menghubungkan antar hub/router/switch karena hubungan ini biasanya melibatkan banyak PC sehingga traffic data akan menjadi lebih besar pula.
Analoginya seperti jalan, cat 6 diibaratkan jalan raya (4 jalur), sedangkan cat 5 seperti jalan biasa (2 jalur).
Bila ingin menggunakan Cat 6 untuk semua koneksi boleh2 saja, tapi akan agak mubazir jadinya.
Sedangkan kalau ingin hemat dan menggunakan Cat 5 semua, jangan kaget kalau koneksi jadi lambat...
>Sedangkan yang membedakan kapan menggunakan kabel straight dan kapan menggunakan kabel cross adalah mesin apa yang ingin kita hubungkan. Bila PC ke router gunakan kabel straight, kalau PC ke PC gunakan kabel cross.
Daftarnya sebagai berikut:
pc - router/hub/switch : straight
hub - router : straight
pc - pc : cross
router -router : cross
hub - hub : cross

pembuatan kabel cross dan straight
untuk membuat kabel diperlukan alat2 sebagai berikut

-kabel UTP (panjang secukupnya)

-RJ-45 (8P8C modular jack)



-crimp tool (untuk motong kabel dan masang RJ-45)

 

-cable tester (tentunya untuk ngetes kabel)




langkah pembuatan:
1. kupas bungkus kabel, akan terlihat 8 kabel kecil warna-warni, cukup, ga usah dikupas lagi sampai terlihat kabel tembaganya (untuk ngupas bisa pakai crimping tool atau gunting/silet/cutter,dkk)

2. urutkan kabel sesuai urutan yang diinginkan, T568A atau T568B

3. tempelkan kabel2 sesuai urutan secara mendatar (pegang aja pake tangan, bukan di lem/solatip)

4. potong sekaligus dengan crimping tool hingga ujung2 kabel segaris




5. masukkan ujung2 kabel kedalam RJ-45



6. dorong2 kabel masuk RJ45 sampai terasa benar2 masuk/mentok

7. gunakan crimping tool untuk memasang RJ-45: cari lobang di cripting tool yang pas untuk kepala RJ-45, masukkan RJ-45(yang sudah dimasuki kabel) kedalam lobang itu, tekan cripting tool sampai terdengar "klik"





8. lakukan langkah 1-7 untuk ujung satunya lagi



9. test kabel dengan cable tester: masukkan kabel ke cable tester, nyalakan, kalau kedelapan lampu kecil bisa menyala (gantian nyalanya) berarti kabel sudah tersambung dengan baik

RESISTOR


RESISTOR

Sebuah resistor adalah terminal dua komponen elektronik yang menghasilkan tegangan pada terminal yang sebanding dengan arus listrik melewatinya sesuai dengan hukum Ohm:

V = IR

Resistor adalah elemen dari jaringan listrik dan sirkuit elektronik dan di mana-mana di sebagian besar peralatan elektronik. Praktis resistor dapat dibuat dari berbagai senyawa dan film, serta resistensi kawat (kawat terbuat dari paduan Resistivitas tinggi, seperti nikel / krom). Karakteristik utama dari sebuah resistor adalah resistensi, toleransi, tegangan kerja maksimum dan power rating. Karakteristik lainnya meliputi koefisien temperatur, kebisingan, dan induktansi. Kurang terkenal adalah perlawanan kritis, nilai yang disipasi daya di bawah batas maksimum yang diijinkan arus, dan di atas batas yang diterapkan tegangan. Perlawanan kritis tergantung pada bahan yang merupakan resistor dan juga dimensi fisik, melainkan ditentukan oleh desain. Resistor dapat diintegrasikan ke dalam sirkuit hibrida dan dicetak, serta sirkuit terpadu. Ukuran, dan posisi lead (atau terminal) yang relevan dengan peralatan desainer; resistor harus secara fisik cukup besar untuk tidak terlalu panas ketika menghilangkan kekuasaan mereka.
Konstruksi

Lead pengaturan
Melalui komponen-lubang biasanya memiliki mengarah meninggalkan tubuh axially. Lainnya telah mengarah datang dari tubuh mereka radial bukan sejajar dengan sumbu resistor. Komponen lain mungkin SMT (surface mount technology) sedangkan resistor daya tinggi mungkin memiliki salah satu dari mereka dirancang mengarah ke dalam heat sink.

Komposisi karbon
Resistor komposisi karbon terdiri dari silinder padat resistif kawat elemen dengan embedded mengarah atau logam tutup akhir yang memimpin terikat kawat. Tubuh resistor dilindungi dengan cat atau plastik. Awal abad ke-20 resistor komposisi karbon telah uninsulated tubuh; memimpin kabel terbungkus di sekitar ujung batang dan elemen perlawanan disolder. Resistor selesai dicat untuk kode warna dari nilainya. Elemen resistif terbuat dari campuran tanah halus (bubuk) karbon dan bahan isolasi (biasanya keramik). Sebuah resin memegang campuran bersama-sama. Resistensi ditentukan oleh rasio mengisi bahan (bubuk keramik) ke karbon. Konsentrasi yang lebih tinggi dari karbon, konduktor yang lemah, menghasilkan resistensi yang lebih rendah. Resistor komposisi karbon yang umum digunakan pada 1960-an dan sebelumnya, tetapi tidak begitu populer untuk penggunaan umum sekarang sebagai jenis lain memiliki spesifikasi yang lebih baik, seperti toleransi, tegangan ketergantungan, dan stres (resistor komposisi karbon akan berubah nilai ketika stres dengan lebih-tegangan ). Selain itu, jika kadar air internal (dari eksposur untuk beberapa jangka waktu ke lingkungan lembab) adalah signifikan, solder panas akan menciptakan reversibel non-perubahan dalam nilai resistansi. Resistor ini Namun, jika tidak pernah mengalami Overvoltage juga tidak terlalu panas itu sangat bisa diandalkan. Mereka masih tersedia, namun relatif cukup mahal. Nilai berkisar dari pecahan dari suatu ohm hingga 22 megohms.

Karbon film
Sebuah film karbon diendapkan pada substrat isolasi, dan sebuah heliks dipotong untuk menciptakan panjang, jalan sempit resistif. Berbagai bentuk, ditambah dengan tahanan karbon, (berkisar 90-400 nΩm) dapat memberikan berbagai resistensi. [1] Karbon film resistor power rating menampilkan berbagai 0,125 W sampai 5 W pada 70 ° C. Resistensi yang tersedia berkisar antara 1 ohm sampai 10 megom. Resistor film karbon dapat beroperasi antara suhu -55 ° C sampai 155 ° C. Ini memiliki 200-600 volt tegangan kerja maksimum jangkauan.

Tebal dan tipis
Resistor film tebal menjadi populer selama tahun 1970-an, dan paling SMD (permukaan perangkat mount) resistor hari ini adalah dari jenis ini. Perbedaan utama antara film tipis dan resistor film tebal tidak aktual ketebalan film, melainkan bagaimana film ini diterapkan pada silinder (aksial resistor) atau permukaan (SMD resistor). Resistor film tipis dibuat oleh sputtering (metode deposisi vakum) yang bahan resistif ke substrat isolator. Film ini kemudian terukir dalam cara yang sama ke yang lama (subtraktif) proses untuk membuat sirkuit tercetak, yaitu permukaan dilapisi dengan foto-materi sensitif, kemudian ditutup dengan sebuah pola film, disinari dengan sinar ultraviolet, dan kemudian yang terbuka lapisan foto-sensitif dikembangkan, dan yang mendasari film tipis terukir pergi. Karena waktu selama yang dilakukan memercik dapat dikontrol, ketebalan lapisan tipis dapat dikontrol secara akurat. Jenis bahan ini juga biasanya berbeda yang terdiri dari satu atau lebih keramik (keramik logam) konduktor seperti tantalum nitrida (TAN), ruthenium dioksida (RuO2), timbal oksida (PbO), bismut ruthenate (Bi2Ru2O7), nikel kromium (NiCr), dan / atau bismut iridate (Bi2Ir2O7).
Hambatan dari kedua tipis dan tebal resistor setelah pembuatan film sangat tidak akurat; mereka biasanya dipotong ke nilai yang akurat oleh pemangkasan kasar atau laser. Resistor film tipis biasanya ditentukan dengan toleransi sebesar 0,1, 0,2, 0,5, atau 1%, dan dengan koefisien suhu 5 hingga 25 ppm / K. Resistor film tebal dapat menggunakan keramik konduktif yang sama, tetapi mereka dicampur dengan disinter (bubuk) gelas dan beberapa jenis cairan sehingga dapat komposit layar-dicetak. Ini gabungan dari kaca dan konduktif keramik (keramik logam) materi tersebut kemudian menyatu (dipanggang) dalam oven sekitar 850 ° C. Resistor film tebal, ketika pertama kali dibuat, mempunyai toleransi 5%, tapi toleransi standar telah meningkat hingga 2% atau 1% dalam beberapa dekade terakhir. Koefisien temperatur resistor film tebal yang tinggi, biasanya ± 200 atau ± 250 ppm / K; 40 Kelvin (70 ° F) perubahan suhu dapat mengubah resistansi sebesar 1%. Resistor film tipis biasanya jauh lebih mahal dibandingkan resistor film tebal. Sebagai contoh, resistor SMD film tipis, dengan 0,5% toleransi, dan dengan 25 ppm / K suhu koefisien, ketika membeli dalam jumlah reel ukuran penuh, sekitar dua kali biaya 1%, 250 ppm / K resistor film tebal.

Film logam
Jenis umum aksial resistor hari ini disebut sebagai resistor film logam. Leadless elektrode logam wajah (MELF) resistor sering menggunakan teknologi yang sama, tetapi adalah resistor berbentuk cylindrically dirancang untuk permukaan meningkat. Perhatikan bahwa resistor jenis lain (misalnya, komposisi karbon) juga tersedia dalam paket MELF. Resistor film logam biasanya dilapisi dengan nikel kromium (NiCr), tetapi mungkin akan dilapisi dengan salah satu bahan keramik logam yang tercantum di atas untuk resistor film tipis. Tidak seperti resistor film tipis, bahan dapat diterapkan menggunakan teknik yang berbeda dari sputtering (meskipun itu adalah salah satu teknik seperti itu). Juga, tidak seperti film tipis resistor, nilai resistansi ditentukan dengan cara memotong heliks melalui lapisan bukan oleh etsa. (Hal ini mirip dengan cara resistor karbon dibuat.) Hasilnya adalah toleransi yang masuk akal (0,5, 1, atau 2%) dan koefisien suhu (biasanya) 25 atau 50 ppm / K.

Wirewound
Wirewound resistor biasanya dibuat oleh gulungan kawat logam, biasanya nichrome, sekitar keramik, plastik, atau fiberglass inti. Ujung-ujung kawat yang disolder atau dilas ke dua topi atau cincin, menempel pada ujung inti. Perakitan dilindungi dengan lapisan cat, plastik, atau lapisan enamel dipanggang pada suhu tinggi. Kawat memimpin kekuasaan rendah biasanya wirewound resistor antara 0,6 dan 0,8 mm dalam diameter dan kalengan untuk memudahkan penyolderan. Untuk resistor wirewound kekuatan yang lebih tinggi, baik luar keramik kasus atau luar aluminium kasus di atas lapisan isolator digunakan. Aluminium-cased jenis dirancang harus terpasang ke wastafel panas menghilangkan panas; yang diberi kekuasaan digunakan tergantung pada cocok dengan heat sink, misalnya, kekuatan 50 W akan diberi nilai resistor panas di sebagian kecil dari daya disipasi jika tidak digunakan dengan heat sink. Wirewound besar resistor dapat diberi nilai selama 1.000 watt atau lebih. Karena Resistor wirewound kumparan mereka mempunyai induktansi lebih diinginkan daripada jenis lain resistor, meskipun berliku kawat di bagian dengan arah terbalik bergantian dapat memperkecil induktansi. Teknik lain mempekerjakan bifilar berkelok-kelok, atau flat mantan tipis (untuk mengurangi luas penampang kumparan). Bagi sebagian besar menuntut rangkaian resistor dengan Ayrton-Perry berliku digunakan.


Foil resistor
Hambatan utama elemen dari resistor foil paduan khusus foil beberapa mikrometer tebal. Sejak diperkenalkan pada 1960-an, foil resistor memiliki presisi yang terbaik dan stabilitas dari setiap resistor tersedia. Salah satu parameter penting yang mempengaruhi stabilitas koefisien suhu resistansi (TCR). Kertas timah yang TCR resistor sangat rendah, dan telah lebih ditingkatkan selama bertahun-tahun. Satu rentang ultra-precision resistor foil menawarkan TCR dari 0,14 ppm / ° C, toleransi ± 0.005%, stabilitas jangka panjang (1 tahun) 25 ppm, (3 tahun) 50 ppm (lebih ditingkatkan 5-kali lipat oleh hermetik penyegelan) , stabilitas di bawah beban (2000 jam) 0,03%, thermal EMF 0,1 μV / ° C, -42 dB kebisingan, koefisien tegangan 0,1 ppm / V, 0,08 μH induktansi, kapasitansi 0,5 pF.


Ammeter shunts
Sebuah ammeter shunt adalah tipe khusus-sensing arus resistor, memiliki empat terminal dan nilai di milliohms atau bahkan mikro-ohm. Alat pengukur arus, dengan sendirinya, biasanya dapat menerima arus terbatas. Untuk mengukur arus tinggi, arus melewati shunt, di mana jatuh tegangan diukur dan ditafsirkan sebagai arus. Tipikal shunt terdiri dari dua blok logam padat, kadang-kadang kuningan, terpasang pada dasar isolasi. Antara blok, dan disolder atau brazed kepada mereka, adalah satu atau lebih potongan koefisien temperatur rendah resistensi (TCR) manganin paduan. Ulir baut besar ke dalam blok membuat koneksi saat ini, sementara banyak-sekrup kecil memberikan sambungan tegangan. Shunts dinilai oleh arus skala penuh, dan sering memiliki jatuh tegangan sebesar 50 mV pada nilai arus.


Grid resistor
Dalam industri tugas berat aplikasi-aplikasi arus tinggi, resistor kotak konveksi besar-cooled kisi strip paduan logam cap terhubung dalam baris-baris antara dua elektroda. Industri seperti resistor dapat grade yang sama besarnya dengan lemari es; beberapa desain bisa menangani lebih dari 500 ampere saat ini, dengan kisaran resistensi memperluas lebih rendah daripada 0,04 ohm. Mereka digunakan dalam aplikasi seperti pengereman dinamis dan beban perbankan untuk lokomotif dan trem, netral AC landasan untuk industri distribusi, pengendalian beban untuk crane dan alat berat, load generator dan harmonis listrik penyaringan untuk substasiun. Istilah grid resistor kadang-kadang digunakan untuk menggambarkan sebuah resistor jenis apa pun yang terhubung ke control grid tabung vakum. Ini bukan sebuah resistor teknologi; itu adalah topologi sirkuit elektronik

PERTAMBANGAN





DAMPAK PERTAMBANGAN DAN SOLUSI
Pencemaran lingkungan adalah suatu keadaan yang terjadi karena perubahan kondisi tata lingkungan (tanah, udara dan air) yang tidak menguntungkan (merusak dan merugikan kehidupan manusia, hewan dan tumbuhan) yang disebabkan oleh kehadiran benda-benda asing (seperti sampah, limbah industri, minyak, logam berbahaya, dsb.) sebagai akibat perbuatan manusia, sehingga mengakibatkan lingkungan tersebut tidak berfungsi seperti semula (Susilo, 2003).

         a.          Dampak Terhadap  Lingkungan
Setiap kegiatan penambangan baik itu penambangan Batu bara, Nikel dan Marmer serta lainnya pasti menimbulkan dampak positif dan negatif bagi lingkungan sekitarnya.    Dampak positifnya adalah meningkatnya devisa negaradan pendapatan asli daerah serta menampung tenaga kerja sedangkan dampak negatif dari kegiatan penambangan dapat dikelompokan dalam bentuk kerusakan permukaan bumi, ampas buangan (tailing), kebisingan, polusi udara, menurunnya permukaan bumi (land subsidence), dan kerusakan karena transportasi alat dan pengangut berat.
      Karena begitu banyak dampak negatif yang ditimbulkan oleh kegiatan penambangan maka perlu kesadaran kita terhadap lingkungan sehingga dapat memenuhi standar lingkungan agar dapat diterima pasar. Apalagi kebanyakan komoditi hasil tambang biasanya dijual dalam bentuk bahan mentah sehingga harus hati-hati dalam pengelolaannya karena bila para pemakai mengetahui bahan mentah yang dibeli mencemari lingkungan, maka dapat dirasakan tamparannya terhadap industri penambangan kita.
      Sementara itu, harus diketahui pula bahwa pengelolaan sumber daya alam hasil penambangan adalah untuk kemakmuran rakyat. Salah satu caranya adalah dengan pengembangan wilayah atau community development. Perusahaan pertambangan wajib ikut mengembangkan wilayah sekitar lokasi tambang termasuk yang berkaitan dengan pengembangan sumber daya manusia. Karena hasil tambang suatu saat akan habis maka penglolaan kegiatan penambangan sangat penting dan tidak boleh terjadi kesalahan.
                          Seperti halnya aktifitas pertambangan lain di Indonesia, Pertambangan batubara juga telah menimbulkan dampak kerusakan lingkungan hidup yang cukup besar, baik itu air, tanah, Udara, dan hutan, Air . Penambangan Batubara secara langsung menyebabkan pencemaran antara lain ;

1.    Pencemaran air
                   Permukaan batubara yang mengandung pirit (besi sulfide) berinteraksi dengan air menghasilkan Asam sulfat yang tinggi sehingga terbunuhnya ikan-ikan di sungai, tumbuhan, dan biota air yang sensitive terhadap perubahan pH yang drastis.
            Batubara yang mengandung uranium dalam konsentrasi rendah, torium, dan isotop radioaktif yang terbentuk secara alami yang jika dibuang akan mengakibatkan kontaminasi radioaktif. Meskipun senyawa-senyawa ini terkandung dalam konsentrasi rendah, namun akan memberi dampak signifikan jika dibung ke lingkungan dalam jumlah yang besar. Emisi merkuri ke lingkungan terkonsentrasi karena terus menerus berpindah melalui rantai makan dan dikonversi menjadi metilmerkuri, yang merupakan senyawa berbahaya dan membahayakan manusia. Terutama ketika mengkonsumsi ikan dari air yang terkontaminasi merkuri.

2.    Pencemaran udara
                   Polusi/pencemaran udara yang kronis sangat berbahaya bagi kesehatan.  Menurut logika udara kotor pasti mempengaruhi kerja paru-paru. Peranan  polutan ikut andil dalam merangsang penyakit pernafasan seperti influensa,bronchitis dan pneumonia serta penyakit kronis seperti asma dan bronchitis kronis.

3.    Pencemaran Tanah
                   Penambangan batubara dapat merusak vegetasi yang ada, menghancurkan profil tanah genetic, menggantikan profil tanah genetic, menghancurkan satwa liar dan habitatnya, degradasi kualitas udara, mengubah pemanfaatan lahan dan hingga pada batas tertentu dapat megubah topografi umum daerah penambangan secara permanen.
                   Disamping itu, penambangan batubara juga menghasilkan gas metana, gas ini mempunyai potensi sebagi gas rumah kaca. Kontribusi gas metana yang  diakibatkan oleh aktivitas manusia, memberikan kontribusi sebesar 10,5% pada emisi gas rumah kaca.

            Aktivitas  pertambangan  batubara  juga  berdampak  terhadap  peningkatan laju  erosi  tanah  dan  sedimentasi  pada  sempadan  dan  muara-muara  sungai.
            Kejadian  erosi  merupakan  dampak  tidak  langsung  dari  aktivitas  pertambangan
batubara melainkan dampak dari pembersihan  lahan untuk bukaan  tambang dan pembangunan  fasilitas  tambang  lainnya  seperti  pembangunan  sarana  dan prasarana  pendukung  seperti  perkantoran,  permukiman  karyawan,Dampak  penurunan  kesuburan  tanah  oleh  aktivitas  pertambangan batubara  terjadi  pada  kegiatan  pengupasan  tanah  pucuk  (top  soil)  dan  tanah penutup  (sub  soil/overburden).  Pengupasan  tanah  pucuk  dan  tanah  penutup akan merubah  sifat-sifat  tanah  terutama  sifat  fisik  tanah  dimana  susunan  tanah yang  terbentuk  secara  alamiah  dengan  lapisan-lapisan  yang  tertata  rapi  dari lapisan  atas  ke  lapisan  bawah  akan  terganggu  dan  terbongkar  akibat pengupasan  tanah  tersebut.

b.        Dampak Terhadap manusia
                    Dampak pencemaran Pencemaran akibat penambangan batubara terhadap manusia, munculnya berbagai penyakit antara lain :
1.      Limbah pencucian batubara zat-zat yang sangat berbahaya bagi kesehatan       manusia jika airnya dikonsumsi  dapat menyebabkan penyakit kulit pada manusia seperti kanker kulit. Kaarena Limbah tersebut mengandung belerang ( b), Merkuri (Hg), Asam Slarida (Hcn), Mangan (Mn), Asam sulfat (H2sO4),  di samping itu debu batubara menyebabkan polusi udara di sepanjang jalan yang dijadikan aktivitas pengangkutan batubara. Hal ini menimbulkan merebaknya penyakit infeksi saluran pernafasan, yang dapat memberi efek jangka panjang berupa kanker paru-paru, darah atau lambung. Bahkan disinyalir dapat menyebabkan kelahiran bayi cacat.
2.      Antaranya dampak negatifnya adalah kerusakan lingkungan dan masalah kesehatan yang ditimbulkan oleh proses penambangan dan penggunaannya. Batubara dan produk buangannya, berupa abu ringan, abu berat, dan kerak sisa pembakaran, mengandung berbagai logam berat :  seperti arsenik, timbal, merkuri, nikel, vanadium, berilium, kadmium, barium, cromium, tembaga, molibdenum, seng, selenium, dan radium, yang sangat berbahaya jika dibuang di lingkungan.
3.      Seperti halnya aktifitas pertambangan lain di Indonesia, Pertambangan batubara juga telah menimbulkan dampak kerusakan lingkungan hidup yang cukup parah, baik itu air, tanah, Udara, dan hutan, Air Penambangan Batubara secaralangsung menyebabkan pencemaran air, yaitu dari limbah penducian batubara tersebut dalam hal memisahkan batubara dengan sulfur. Limbah pencucian tersebut mencemari air sungai sehingga warna air sungai menjadi keruh, Asam, dan menyebabkan pendangkalan sungai akibat endapan pencucian batubara tersebut. Limbah pencucian batubara setelah diteliti mengandung zat-zat yang sangat berbahaya bagi kesehatan manusia jika airnya dikonsumsi. Limbah tersebut mengandung belerang ( b), Merkuri (Hg), Asam Slarida (Hcn), Mangan (Mn), Asam sulfat (H2sO4), dan Pb. Hg dan Pb merupakan logam berat yang dapat menyebabkan penyakit kulit pada manusia seperti kanker kulit


c.         Dampak Sosial dan kemasyarakatan

1.      Terganggunya Arus Jalan Umum
a.          Banyaknya lalu lalang kendaraan yang digunakan untuk angkutan batubara    berdampak pada aktivitas pengguna jalan lain. Semakin banyaknya kecelakaan,   meningkatnya biaya pemeliharaan jembatan dan jalan, adalah sebagian dari dampak yang ditimbulkan.

2.  Konflik Lahan Hingga Pergeseran Sosial-Budaya Masyarakat
            Konflik lahan kerap terjadi antara perusahaan dengan masyarakat lokal yang lahannya menjadi obyek penggusuran. Kerap perusahaan menunjukkan kearogansiannya dengan menggusur lahan tanpa melewati persetujuan pemilik atau pengguna lahan. Atau tak jarang mereka memberikan ganti rugi yang tidak seimbang denga hasil yang akan mereka dapatkan nantinya. Tidak hanya konflik lahan, permasalahan yang juga sering terjadi adalah diskriminasi. Akibat dari pergeseran ini membuat pola kehidupan mereka berubah menjadi lebih konsumtif. Bahkan kerusakan moralpun dapat terjadi akibat adanya pola hidup yang berubah.

             Nilai atau dampak positif dari batubara itu sendiri, Sumber wikipedia.com mengatakan Tidak dapat di pungkiri bahwa batubara adalah salah satu bahan tambang yang memiliki nilai ekonomis yang cukup tinggi. Indonesia adalah salah satu negara penghasil batubara terbesar no.2 setelah Australia hingga tahun 2008. Total sumber daya batubara yang dimiliki Indonesia mencapai 104.940 Milyar Ton dengan total cadangan sebesar 21.13 Milyar Ton. Nanun hal ini tetap memberikan efek positif dan negatif, dan hal positifnya Sumber wikipedia.com mengatakan. Hal positifnya adalah bertambahnya devisa negara dari kegiatan penambanganya.
             Secara teoritis usaha pertambangan ditujukan untuk kesejahteraan masyarakat. Para pekerja tambang selayaknya bekerja sama dengan masyarakat sekitar. Salah satu bentuknya dengan cara memperkerjakan masyarakat sekitar dalam usaha tambang sekitar, sehingga membantu kehidupan ekonomi masyarakat sekitar.


v  Pembakaran batubara dan ancaman terbesar terhadap iklim kita
            Pembakaran batubara meninggalkan jejak kerusakan yang tak kalah dasyat. Air dalam jumlah yang besar dalam pengoperasian PLTU mengakibatkan kelangkaan air di banyak tempat. Polutan beracun yang keluar dari cerobong asap PLTU mengancam kesehatan masyarakat dan lingkungan sekitar. Partikel halus debu batubara adalah penyebab utama penyakit pernapasan akut, merkuri perusak perkembangan saraf anak-anak balita dan janin dalam kandungan ibu hamil yang tinggal di sekitar PLTU. Dan yang tak kalah penting, pembakaran batubara di PLTU adalah sumber utama gas rumah kaca penyebab perubahan iklim seperti karbon dioksida, sulfur dioksida, nitrogen dioksida, dan metana yang memperburuk kondisi  iklim kita.
v  Pertambangan batubara yang ditinggalkan dan limbah pembakaran batubara
            Jejak kerusakan yang ditinggalkan oleh batubara tidak berhenti di saat pembakarannya. Di ujung rantai kepemilikannya, terdapat pertambangan batubara yang ditinggalkan setelah dieksploitasi habis, limbah pembakaran batubara, dan hamparan alam yang rusak tanpa pernah akan bisa kembali seperti sediakala.
            Pertambangan yang ditinggalkan pasca dieksploitasi habis, meninggalkan segudang masalah untuk lingkungan dan masyarakat sekitarnya. Lubang-lubang raksasa, drainase tambang asam, dan erosi tanah hanya sebagian dari masalah. Hamparan alam yang rusak adalah adalah kondisi permanen yang tak akan pernah pulih , sekeras apapun usaha yang dilakukan untuk mengembalikannya.
Limbah pembakaran batubara sangat beracun, dan membahayakan kesehatan masyarakat, tembaga, cadmium dan arsenic adalah sebagian dari zat toksik yang dihasilkan dari limbah tersebut, yang masing-masing memicu keracunan, gagal ginjal, dan kanker.
            Setiap rantai dalam siklus pemanfaatan batubara meyumbangkan kerusakan yang diakibatkan oleh energi kotor ini—masing-masing dengan caranya sendiri. Kerusakan ini nyata dan mematikan.
v  lingkungan pasca tambang
             Kegiatan pasca tambang pembangunan yang berkelanjutan semestinya menghasilkan output yaitu pemanfaatan yang optimal dan bijak terhadap sumberdaya alam yang tak terbaharukan, serta berkesinambungan terhadap keseterdiaan sumber daya alam. Adanya dampak ekologis dari kegiatan pasca tambang memacu untuk dipikirkan terlebih dahulu, serta dilakukan penelitian dan penaatan ruang karena bila tidak dilakukan kompehensip, maka penutupan tambang hanya akan meninggalakan kerusakan bentang alam dan lingkungan. Untuk itu diperlukan upaya penanggulanan pencemaran dan kerusakan lingkungan pada saat operasi maupun pasca ditutupnya usa tambang sebagai berkesinambungan yang pada intinya adalah upaya yang bisa untuk menghilangkan dampak dari kegiatan tambang dengan melakukan suaru gran desain dan krontruksi kegiatan tambang yang berdampak lingkungan yang dikenal dengan AMDAL.
            Dalam kaitan dengan hal ini pemerintah harus meyeleksi secara ketat para pemegang Kuasa Penambangan sehingga betul-betul melaksanakan AMDAL sesuai dengan peraturan yang berlaku. Peraturan perundangan mengenai dampak lingkungan berkembang sejak diundangkannya Undang-Undang No. 4/1982, Undang-Undang No. 23/1997 serta Surat Keputusan Menteri Pertambangan dan Energi No. 389K/008/MPE/1995 tentang Pedoman Teknis Penyusunan Upaya Pengelolaan Lingkungan (UKL) dan Upaya Pemantauan Lingkungan (UPL).
Untuk menyederhanakan prosedur, pemerintah harus membuat daftar kegiatan yang sudah berjalan atau yang disebut listing, yang didasarkan ada luas jangkuan kegiatan dan skala produksinnya. Semua kegiatan penambangan yang termasuk dalam daftar diharuskan membuat AMDAL, sedangkan tidak termasuk dalam daftar diharuskan membuat UKL dan UPL. Kegiatan yang menyusun AMDAL adalah kegiatan penambangan yang berada di lokasi yang sensitif terhadap lingkungan seperti hutan lindung, daerah cagar budaya dan cagar alam. Dalam undang-undang No. 11/1967 mengenai pertambangan telah dicantumkan pula daerah yang tidak diperkenankan untuk dijadikan ajang kegiatan penambangan antara lain kuburan, cagar budaya, bangunan penting seperti jembatan, instalasi militer dan sebagainya.

v  SOLUSI TERHADAP DAMPAK  DAN PENGARUH PERTAMBANGA BATUBARA

            Tidak dapat di pungkiri bahwa pemerintah mempunyai peran yang penting dalam mencari solusi terhadap dampak dan pengaruh pertambangan    batu bara yang ada di indonesia. Pemerintah harus menyadari bahwa tugas mereka adalah memastikan masa depan yang dimotori oleh energi bersih dan terbarukan. Dengan cara ini, kerusakan pada manusia dan kehidupan sosialnya serta kerusakan ekologi dan dampak buruk perubahan iklim dapat dihindari.                    
Sayangnya, Pemerintah Indonesia ingin percaya bahwa batubara jawaban dari permintaan energi yang menjulang, serta tidak bersedia mengakui potensi luar biasa dari energi terbarukan yang sumbernya melimpah di negeri ini.
       Upaya pencegahan dan penanggulangan terhadap dampak yang    ditimbulkan oleh penambang batu bara dapat ditempuh dengan beberapa pendekatan, untuk dilakukan tindakan-tindakan tertentu sebagai berikut :
1.         Pendekatan teknologi, dengan orientasi teknologi preventif (control/protective) yaitu pengembangan sarana jalan/jalur khusus untuk pengangkutan batu bara sehingga akan mengurangi keruwetan masalah transportasi. Pejalan kaki (pedestrian) akan terhindar dari ruang udara yang kotor. Menggunakan masker debu (dust masker) agar meminimalkan risiko terpapar/terekspose oleh debu batu bara (coal dust).

2.         Pendekatan lingkungan yang ditujukan bagi penataan lingkungan sehingga akan terhindar dari kerugian yang ditimbulkan akibat kerusakan lingkungan. Upaya reklamasi dan penghijauan kembali bekas penambangan batu bara dapat mencegah perkembangbiakan nyamuk malaria. Dikhawatirkan bekas lubang/kawah batu bara dapat menjadi tempat perindukan nyamuk (breeding place).


3.         Pendekatan administratif yang mengikat semua pihak dalam kegiatan pengusahaan penambangan batu bara tersebut untuk mematuhi ketentuan-ketentuan yang berlaku (law enforcement)

4.         Pendekatan edukatif, kepada masyarakat yang dilakukan serta dikembangkan untuk membina dan memberikan penyuluhan/penerangan terus menerus memotivasi perubahan perilaku dan membangkitkan kesadaran untuk ikut memelihara kelestarian lingkungan.



                                                              KESIMPULAN

Setiap kegiatan pastilah menghasilkan suatu akibat, begitu juga dengan kegiatan eksploitasi bahan tambang, pastilah membawa dampak yang jelas terhadap lingkungan dan juga kehidupan di sekitarnya, dampak tersebut dapat bersifat negatif ataupun positif, namun pada setiap kegiatan eksploitasi pastilah terdapat dampak negatifnya, hal tersebut dapat diminimalisir apabila pihak yang bersangkutan bertanggung jawab terhadap pengolahan sumber daya alamnya dan juga memanfaatkannya secara bijaksana.
Sebagai contoh adalah kegiatan pertambangan batubara di pulau Kalimantan yang bisa dibilang telah mencapai tahap yang kronis, dengan menyisakan lubang-lubang besar bekas kegiatan pertambangan dan juga dampak-dampak yang lainnya. Hal tersebut setidaknya dapat diminimalisir dan dikurangi dampaknya apabila kita melakukan tindakan perbaikan dan juga memanfaatkan SDA secara bijaksana